Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498701

RESUMO

Venous thromboembolic events are significant contributors to morbidity and mortality in patients with stroke. Neutrophils are among the first cells in the blood to respond to stroke and are known to promote deep vein thrombosis (DVT). Integrin α9 is a transmembrane glycoprotein, highly expressed on neutrophils and stabilizes neutrophil adhesion to activated endothelium via vascular cell adhesion molecule 1 (VCAM-1). Nevertheless, the causative role of neutrophil integrin α9 in post-stroke DVT remains unknown. Here, we found higher neutrophil integrin α9 and plasma VCAM-1 levels in humans and mice with stroke. Using mice with embolic stroke, we observed enhanced DVT severity in a novel model of post-stroke DVT. Neutrophil-specific integrin α9 deficient mice (α9fl/flMrp8Cre+/-) exhibited a significant reduction in post-stroke DVT severity along with decreased neutrophils and citrullinated histone H3 in thrombi. Unbiased transcriptomics indicated that α9/VCAM-1 interactions induced pathways related to neutrophil inflammation, exocytosis, NF-κB signaling, and chemotaxis. Mechanistic studies revealed that integrin α9/VCAM-1 interactions mediate neutrophil adhesion at the venous shear rate, promote neutrophil hyperactivation, increase phosphorylation of extracellular signal-regulated kinase (ERK), and induce endothelial cell apoptosis. Using pharmacogenomic profiling, virtual screening, and in vitro assays, we identified macitentan as a potent inhibitor of integrin α9/VCAM-1 interactions and neutrophil adhesion to activated endothelial cells. Macitentan reduced DVT severity in control mice with and without stroke, but not in α9fl/flMrp8Cre+/- mice, suggesting that macitentan improves DVT outcomes by inhibiting neutrophil integrin α9. Collectively, we uncovered a previously unrecognized and critical pathway involving the α9/VCAM-1 axis in neutrophil hyperactivation and DVT.

2.
Redox Biol ; 68: 102949, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922764

RESUMO

Hydropersulfide and hydropolysulfide metabolites are increasingly important reactive sulfur species (RSS) regulating numerous cellular redox dependent functions. Intracellular production of these species is known to occur through RSS interactions or through translational mechanisms involving cysteinyl t-RNA synthetases. However, regulation of these species under cell stress conditions, such as hypoxia, that are known to modulate RSS remain poorly understood. Here we define an important mechanism of increased persulfide and polysulfide production involving cystathionine gamma lyase (CSE) phosphorylation at serine 346 and threonine 355 in a substrate specific manner, under acute hypoxic conditions. Hypoxic phosphorylation of CSE occurs in an AMP kinase dependent manner increasing enzyme activity involving unique inter- and intramolecular interactions within the tetramer. Importantly, both cellular hypoxia and tissue ischemia result in AMP Kinase dependent CSE phosphorylation that regulates blood flow in ischemic tissues. Our findings reveal hypoxia molecular signaling pathways regulating CSE dependent persulfide and polysulfide production impacting tissue and cellular response to stress.


Assuntos
Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/metabolismo , Fosforilação , Adenilato Quinase/metabolismo , Cistationina gama-Liase/genética , Hipóxia
3.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446174

RESUMO

Mental stress is a risk factor for myocardial infarction in women. The central hypothesis of this study is that restraint stress induces sex-specific changes in gene expression in the heart, which leads to an intensified response to ischemia/reperfusion injury due to the development of a pro-oxidative environment in female hearts. We challenged male and female C57BL/6 mice in a restraint stress model to mimic the effects of mental stress. Exposure to restraint stress led to sex differences in the expression of genes involved in cardiac hypertrophy, inflammation, and iron-dependent cell death (ferroptosis). Among those genes, we identified tumor protein p53 and cyclin-dependent kinase inhibitor 1A (p21), which have established controversial roles in ferroptosis. The exacerbated response to I/R injury in restraint-stressed females correlated with downregulation of p53 and nuclear factor erythroid 2-related factor 2 (Nrf2, a master regulator of the antioxidant response system-ARE). S-female hearts also showed increased superoxide levels, lipid peroxidation, and prostaglandin-endoperoxide synthase 2 (Ptgs2) expression (a hallmark of ferroptosis) compared with those of their male counterparts. Our study is the first to test the sex-specific impact of restraint stress on the heart in the setting of I/R and its outcome.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Camundongos , Feminino , Masculino , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Expressão Gênica , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
4.
Nat Rev Cardiol ; 20(2): 109-125, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35931887

RESUMO

Hydrogen sulfide (H2S) has emerged as a gaseous signalling molecule with crucial implications for cardiovascular health. H2S is involved in many biological functions, including interactions with nitric oxide, activation of molecular signalling cascades, post-translational modifications and redox regulation. Various preclinical and clinical studies have shown that H2S and its synthesizing enzymes - cystathionine γ-lyase, cystathionine ß-synthase and 3-mercaptosulfotransferase - can protect against cardiovascular pathologies, including arrhythmias, atherosclerosis, heart failure, myocardial infarction and ischaemia-reperfusion injury. The bioavailability of H2S and its metabolites, such as hydropersulfides and polysulfides, is substantially reduced in cardiovascular disease and has been associated with single-nucleotide polymorphisms in H2S synthesis enzymes. In this Review, we highlight the role of H2S, its synthesizing enzymes and metabolites, their roles in the cardiovascular system, and their involvement in cardiovascular disease and associated pathologies. We also discuss the latest clinical findings from the field and outline areas for future study.


Assuntos
Insuficiência Cardíaca , Sulfeto de Hidrogênio , Infarto do Miocárdio , Humanos , Sulfetos , Sulfeto de Hidrogênio/metabolismo , Coração
5.
DNA Repair (Amst) ; 116: 103344, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696854

RESUMO

The ataxia-telangiectasia mutated (ATM) protein regulates cell cycle checkpoints, the cellular redox state, and double-stranded DNA break repair. ATM loss causes the disorder ataxia-telangiectasia (A-T), distinguished by ataxia, telangiectasias, dysregulated cellular redox and iron responses, and an increased cancer risk. We examined the sulfur pool in A-T cells, with and without an ATM expression vector. While free and bound sulfide levels were not changed with ATM expression, the acid-labile sulfide faction was significantly increased. ATM expression also increased cysteine desulfurase (NFS1), NFU1 iron-sulfur cluster scaffold homolog protein, and several mitochondrial complex I proteins' expression. Additionally, ATM expression suppressed cystathionine ß-synthase and cystathionine γ-synthase protein expression, cystathionine γ-synthase enzymatic activity, and increased the reduced to oxidized glutathione ratio. This last observation is interesting, as dysregulated glutathione is implicated in A-T pathology. As ATM expression increases the expression of proteins central in initiating 2Fe-2S and 4Fe-4S cluster formation (NFS1 and NFU1, respectively), and the acid-labile sulfide faction is composed of sulfur incorporated into Fe-S clusters, our data indicates that ATM regulates aspects of Fe-S cluster biosynthesis, the transsulfuration pathway, and glutathione redox cycling. Thus, our data may explain some of the redox- and iron-related pathologies seen in A-T.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Ataxia Telangiectasia , Proteínas Ferro-Enxofre , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Liases de Carbono-Enxofre/metabolismo , Glutationa/metabolismo , Humanos , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo
6.
Nitric Oxide ; 116: 47-64, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534626

RESUMO

Sulfides and persulfides/polysulfides (R-Sn-R', n > 2; R-Sn-H, n > 1) are endogenously produced metabolites that are abundant in mammalian and human cells and tissues. The most typical persulfides that are widely distributed among different organisms include various reactive persulfides-low-molecular-weight thiol compounds such as cysteine hydropersulfide, glutathione hydropersulfide, and glutathione trisulfide as well as protein-bound thiols. These species are generally more redox-active than are other simple thiols and disulfides. Although hydrogen sulfide (H2S) has been suggested for years to be a small signaling molecule, it is intimately linked biochemically to persulfides and may actually be more relevant as a marker of functionally active persulfides. Reactive persulfides can act as powerful antioxidants and redox signaling species and are involved in energy metabolism. Recent evidence revealed that cysteinyl-tRNA synthetases (CARSs) act as the principal cysteine persulfide synthases in mammals and contribute significantly to endogenous persulfide/polysulfide production, in addition to being associated with a battery of enzymes including cystathionine ß-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, which have been described as H2S-producing enzymes. The reactive sulfur metabolites including persulfides/polysulfides derived from CARS2, a mitochondrial isoform of CARS, also mediate not only mitochondrial biogenesis and bioenergetics but also anti-inflammatory and immunomodulatory functions. The physiological roles of persulfides, their biosynthetic pathways, and their pathophysiology in various diseases are not fully understood, however. Developing basic and high precision techniques and methods for the detection, characterization, and quantitation of sulfides and persulfides is therefore of great importance so as to thoroughly understand and clarify the exact functions and roles of these species in cells and in vivo.


Assuntos
Técnicas de Química Analítica/métodos , Sulfeto de Hidrogênio/análise , Sulfetos/análise , Animais , Linhagem Celular , Humanos , Sulfeto de Hidrogênio/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/análise , Proteínas/química , Proteômica/métodos , Sulfetos/metabolismo
7.
Nat Commun ; 12(1): 3108, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035265

RESUMO

The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Sulfeto de Hidrogênio/metabolismo , Quinona Redutases/metabolismo , Animais , Encéfalo/patologia , Lesões Encefálicas/genética , Células Cultivadas , Feminino , Hipóxia , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Mitocôndrias/metabolismo , NAD/metabolismo , Quinona Redutases/genética , Interferência de RNA , Ratos Sprague-Dawley
8.
Kidney Int Rep ; 6(5): 1379-1396, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34013116

RESUMO

INTRODUCTION: Deciphering the intricacies of the interactions of glomerulopathic Ig light chains with mesangial cells is key to delineate signaling events responsible for the mesangial pathologic alterations that ensue. METHODS: Human mesangial cells, caveolin 1 (CAV1), wild type (WT) ,and knockout (KO), were incubated with glomerulopathic light chains purified from the urine of patients with light chain-associated (AL) amyloidosis or light chain deposition disease. Associated signaling events induced by surface interactions of glomerulopathic light chains with caveolins and other membrane proteins, as well as the effect of epigallocatechin-3-gallate (EGCG) on the capacity of mesangial cells to intracellularly process AL light chains were investigated using a variety of techniques, including chemical crosslinking with mass spectroscopy, immunofluorescence, and ultrastructural immunolabeling. RESULTS: Crosslinking experiments provide evidence suggesting that sortilin-related receptor (SORL1), a transmembrane sorting receptor that regulates cellular trafficking of proteins, is a component of the receptor on mesangial cells for glomerulopathic light chains. Colocalization of glomerulopathic light chains with SORL1 in caveolae and also in lysosomes when light chain internalization occurred, was documented using double immunofluorescence and immunogold labeling ultrastructural techniques. It was found that EGCG directly blocks c-Fos cytoplasmic to nuclei signal translocation after interactions of AL light chains with mesangial cells, resulting in a decrease in amyloid formation. CONCLUSION: Our findings document for the first time a role for SORL1 linked to glomerular pathology and signaling events that take place when certain monoclonal light chains interact with mesangial cells. This finding may lead to novel therapies for treating renal injury caused by glomerulopathic light chains.

9.
Redox Biol ; 38: 101817, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310503

RESUMO

Oxidative stress drives the pathogenesis of atrial fibrillation (AF), the most common arrhythmia. In the cardiovascular system, cystathionine γ-lyase (CSE) serves as the primary enzyme producing hydrogen sulfide (H2S), a mammalian gasotransmitter that reduces oxidative stress. Using a case control study design in patients with and without AF and a mouse model of CSE knockout (CSE-KO), we evaluated the role of H2S in the etiology of AF. Patients with AF (n = 51) had significantly reduced plasma acid labile sulfide levels compared to patients without AF (n = 65). In addition, patients with persistent AF (n = 25) showed lower plasma free sulfide levels compared to patients with paroxysmal AF (n = 26). Consistent with an important role for H2S in AF, CSE-KO mice had decreased atrial sulfide levels, increased atrial superoxide levels, and enhanced propensity for induced persistent AF compared to wild type (WT) mice. Rescuing H2S signaling in CSE-KO mice by Diallyl trisulfide (DATS) supplementation or reconstitution with endothelial cell specific CSE over-expression significantly reduced atrial superoxide, increased sulfide levels, and lowered AF inducibility. Lastly, low H2S levels in CSE KO mice was associated with atrial electrical remodeling including longer effective refractory periods, slower conduction velocity, increased myocyte calcium sparks, and increased myocyte action potential duration that were reversed by DATS supplementation or endothelial CSE overexpression. Our findings demonstrate an important role of CSE and H2S bioavailability in regulating electrical remodeling and susceptibility to AF.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Sulfeto de Hidrogênio , Animais , Disponibilidade Biológica , Estudos de Casos e Controles , Endotélio Vascular , Humanos , Camundongos , Camundongos Knockout
10.
Redox Biol ; 36: 101650, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32763515

RESUMO

Endothelial dysfunction is a critical, initiating step in the development of hypertension (HTN) and mitochondrial reactive oxygen species (ROS) are important contributors to endothelial dysfunction. Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) in the nicotinamide nucleotide transhydrogenase (Nnt) gene that are associated with endothelial dysfunction and increased risk for HTN. NNT is emerging as an important enzyme that regulates mitochondrial NADPH levels and mitochondrial redox balance by supporting the thiol dependent peroxidase systems in the mitochondria. We have previously shown that the absence of NNT in C57Bl/6J animals promotes a more severe hypertensive phenotype through reductions in •NO and endothelial dependent vessel dilation. However, the impact of NNT on human endothelial cell function remains unclear. We utilized NNT directed shRNA in human aortic endothelial cells to test the hypothesis that NNT critically regulates mitochondrial redox balance and endothelial function in response to angiotensin II (Ang II). We demonstrate that NNT expression and activity are elevated in response to the mitochondrial dysfunction and oxidative stress associated with Ang II treatment. Knockdown of NNT led to a significant elevation of mitochondrial ROS production and impaired glutathione peroxidase and glutathione reductase activities associated with a reduction in the NADPH/NADP+ ratio. Loss of NNT also promoted mitochondrial dysfunction, disruption of the mitochondrial membrane potential, and impaired ATP production in response to Ang II. Finally, we observed that, while the loss of NNT augmented eNOS phosphorylation at Ser1177, neither eNOS activity nor nitric oxide production were similarly increased. The results from these studies clearly demonstrate that NNT is critical for the maintenance of mitochondrial redox balance and mitochondrial function. Loss of NNT and disruption of redox balance leads to oxidative stress that compromises eNOS activity that could have a profound effect on the endothelium dependent regulation of vascular tone.


Assuntos
NADP Trans-Hidrogenases , Angiotensina II/metabolismo , Animais , Células Endoteliais/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , NADP Trans-Hidrogenase Específica para A ou B/genética , NADP Trans-Hidrogenases/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 40(4): 874-884, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131614

RESUMO

Hydrogen sulfide has emerged as an important gaseous signaling molecule and a regulator of critical biological processes. However, the physiological significance of hydrogen sulfide metabolites such as persulfides, polysulfides, and other reactive sulfur species (RSS) has only recently been appreciated. Emerging evidence suggests that these RSS molecules may have similar or divergent regulatory roles compared with hydrogen sulfide in various biological activities. However, the chemical nature of persulfides and polysulfides is complex and remains poorly understood within cardiovascular and other pathophysiological conditions. Recent reports suggest that RSS can be produced endogenously, with different forms having unique chemical properties and biological implications involving diverse cellular responses such as protein biosynthesis, cell-cell barrier functions, and mitochondrial bioenergetics. Enzymes of the transsulfuration pathway, CBS (cystathionine beta-synthase) and CSE (cystathionine gamma-lyase), may also produce RSS metabolites besides hydrogen sulfide. Moreover, CARSs (cysteinyl-tRNA synthetase) are also able to generate protein persulfides via cysteine persulfide (CysSSH) incorporation into nascently formed polypeptides suggesting a new biologically relevant amino acid. This brief review discusses the biochemical nature and potential roles of RSS, associated oxidative stress redox signaling, and future research opportunities in cardiovascular disease.


Assuntos
Doenças Cardiovasculares/metabolismo , Sulfeto de Hidrogênio/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Disponibilidade Biológica , Doenças Cardiovasculares/fisiopatologia , Cistationina gama-Liase/genética , Humanos , Óxidos de Nitrogênio/metabolismo , Oxirredução , Polimorfismo Genético , Sulfetos/metabolismo , Remodelação Vascular
12.
Redox Biol ; 34: 101447, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035920

RESUMO

Cardiovascular disease is the leading cause of death and disability worldwide with increased oxidative stress and reduced NO bioavailability serving as key risk factors. For decades, elevation in protein abundance and enzymatic activity of xanthine oxidoreductase (XOR) under hypoxic/inflammatory conditions has been associated with organ damage and vascular dysfunction. Recent reports have challenged this dogma by identifying a beneficial function for XOR, under similar hypoxic/acidic conditions, whereby XOR catalyzes the reduction of nitrite (NO2-) to nitric oxide (NO) through poorly defined mechanisms. We previously reported that hydrogen sulfide (H2S/sulfide) confers significant vascular benefit under these same conditions via NO2- mediated mechanisms independent of nitric oxide synthase (NOS). Here we report for the first time the convergence of H2S, XOR, and nitrite to form a concerted triad for NO generation. Specifically, hypoxic endothelial cells show a dose-dependent, sulfide and polysulfide (diallyl trisulfide (DATS)-induced, NOS-independent NO2- reduction to NO that is dependent upon the enzymatic activity of XOR. Interestingly, nitrite reduction to NO was found to be slower and more sustained with DATS compared to H2S. Capacity for sulfide/polysulfide to produce an XOR-dependent impact on NO generation translates to salutary actions in vivo as DATS administration in cystathionine-γ-lyase (CSE) knockout mice significantly improved hindlimb ischemia blood flow post ligation, while the XOR-specific inhibitor, febuxostat (Febx), abrogated this benefit. Moreover, flow-mediated vasodilation (FMD) in CSE knockout mice following administration of DATS resulted in greater than 4-fold enhancement in femoral artery dilation while co-treatment with Febx completely completely abrogated this effect. Together, these results identify XOR as a focal point of convergence between sulfide- and nitrite-mediated signaling, as well as affirm the critical need to reexamine current dogma regarding inhibition of XOR in the context of vascular dysfunction.


Assuntos
Sulfeto de Hidrogênio , Xantina Desidrogenase , Animais , Células Endoteliais , Camundongos , Óxido Nítrico , Nitrito Redutases , Xantina Desidrogenase/genética
13.
Compr Physiol ; 9(3): 1213-1247, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31187898

RESUMO

Ischemic vascular remodeling occurs in response to stenosis or arterial occlusion leading to a change in blood flow and tissue perfusion. Altered blood flow elicits a cascade of molecular and cellular physiological responses leading to vascular remodeling of the macro- and micro-circulation. Although cellular mechanisms of vascular remodeling such as arteriogenesis and angiogenesis have been studied, therapeutic approaches in these areas have had limited success due to the complexity and heterogeneous constellation of molecular signaling events regulating these processes. Understanding central molecular players of vascular remodeling should lead to a deeper understanding of this response and aid in the development of novel therapeutic strategies. Hydrogen sulfide (H2 S) and nitric oxide (NO) are gaseous signaling molecules that are critically involved in regulating fundamental biochemical and molecular responses necessary for vascular growth and remodeling. This review examines how NO and H2 S regulate pathophysiological mechanisms of angiogenesis and arteriogenesis, along with important chemical and experimental considerations revealed thus far. The importance of NO and H2 S bioavailability, their synthesis enzymes and cofactors, and genetic variations associated with cardiovascular risk factors suggest that they serve as pivotal regulators of vascular remodeling responses. © 2019 American Physiological Society. Compr Physiol 9:1213-1247, 2019.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Isquemia/fisiopatologia , Neovascularização Fisiológica/fisiologia , Óxido Nítrico/fisiologia , Remodelação Vascular/fisiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Isquemia/terapia , Mutação , Neovascularização Patológica/fisiopatologia , Óxido Nítrico/química , Transdução de Sinais/fisiologia
14.
Biochem Pharmacol ; 166: 174-184, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31085159

RESUMO

Uncoupling protein 2 (UCP2) is upregulated in several human cancers which contributes to tumorigenesis. However, whether UCP2 expression is amplified in cholangiocarcinoma and whether UCP2 promotes cholangiocarcinoma progression are not known. Our results found that in human cholangiocarcinoma tissues, UCP2 was highly expressed in tumors and its levels were negatively associated with prognosis. Importantly, lymph node invasion of cholangiocarcinoma was associated with higher UCP2 expression. In cholangiocarcinoma cells, cell proliferation and migration were suppressed when UCP2 expression was inhibited via gene knockdown. In UCP2 knockdown cells, glycolysis was inhibited, the mesenchymal markers were downregulated whereas AMPK was activated. The increased mitochondrial ROS and AMP/ATP ratio might be responsible for this activation. When the UCP2 inhibitor genipin was applied, tumor cell migration and 3D growth were suppressed via enhancing the mesenchymal-epithelial transition of cholangiocarcinoma cells. Furthermore, cholangiocarcinoma cells became sensitive to cisplatin and gemcitabine treatments when genipin was applied. In conclusion, our results demonstrate that the amplified expression of UCP2 contributes to the progression of cholangiocarcinoma through a glycolysis-mediated mechanism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Plasticidade Celular/fisiologia , Colangiocarcinoma/metabolismo , Mitocôndrias/metabolismo , Proteína Desacopladora 2/biossíntese , Neoplasias dos Ductos Biliares/tratamento farmacológico , Linhagem Celular Tumoral , Plasticidade Celular/efeitos dos fármacos , Colangiocarcinoma/tratamento farmacológico , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Células HEK293 , Humanos , Iridoides/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína Desacopladora 2/antagonistas & inibidores , Proteína Desacopladora 2/genética
15.
DNA Repair (Amst) ; 73: 55-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30470507

RESUMO

The ataxia telangiectasia-mutated and Rad3-related (ATR) serine/threonine kinase plays a central role in the repair of replication-associated DNA damage, the maintenance of S and G2/M-phase genomic stability, and the promotion of faithful mitotic chromosomal segregation. A number of stimuli activate ATR, including persistent single-stranded DNA at stalled replication folks, R loop formation, hypoxia, ultraviolet light, and oxidative stress, leading to ATR-mediated protein phosphorylation. Recently, hydrogen sulfide (H2S), an endogenous gasotransmitter, has been found to regulate multiple cellular processes through complex redox reactions under similar cell stress environments. Three enzymes synthesize H2S: cystathionine-ß-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Since H2S can under some conditions cause DNA damage, we hypothesized that ATR activity may regulate cellular H2S concentrations and H2S-syntheszing enzymes. Here we show that human colorectal cancer cells carrying biallelic knock-in hypomorphic ATR mutations have lower cellular H2S concentrations than do syngeneic ATR wild-type cells, and all three H2S-synthesizing enzymes show lower protein expression in the ATR hypomorphic mutant cells. Additionally, ATR serine 428 phosphorylation is altered by H2S donor and H2S synthesis enzyme inhibition, while the oxidative-stress induced phosphorylation of the ATR-regulated protein CHK1 on serine 345 is increased by H2S synthesis enzyme inhibition. Lastly, inhibition of H2S production potentiated oxidative stress-induced double-stranded DNA breaks in the ATR hypomorphic mutant compared to ATR wild-type cells. Our findings demonstrate that the ATR kinase regulates and is regulated by H2S.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sulfeto de Hidrogênio/metabolismo , Linhagem Celular Tumoral , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Quebras de DNA de Cadeia Dupla , Regulação da Expressão Gênica , Humanos , Mutação , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfurtransferases/genética , Sulfurtransferases/metabolismo
16.
Nat Commun ; 9(1): 3713, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213949

RESUMO

The use of natural substance to ward off microbial infections has a long history. However, the large-scale production of natural extracts often reduces antibacterial potency, thus limiting practical applications. Here we present a strategy for converting natural organosulfur compounds into nano-iron sulfides that exhibit enhanced antibacterial activity. We show that compared to garlic-derived organosulfur compounds nano-iron sulfides exhibit an over 500-fold increase in antibacterial efficacy to kill several pathogenic and drug-resistant bacteria. Furthermore, our analysis reveals that hydrogen polysulfanes released from nano-iron sulfides possess potent bactericidal activity and the release of polysulfanes can be accelerated by the enzyme-like activity of nano-iron sulfides. Finally, we demonstrate that topical applications of nano-iron sulfides can effectively disrupt pathogenic biofilms on human teeth and accelerate infected-wound healing. Together, our approach to convert organosulfur compounds into inorganic polysulfides potentially provides an antibacterial alternative to combat bacterial infections.


Assuntos
Antibacterianos/química , Biofilmes/efeitos dos fármacos , Alho/química , Proteínas Ferro-Enxofre/química , Sulfetos/química , Compostos de Enxofre/química , Células 3T3 , Compostos Alílicos/química , Animais , Antioxidantes/química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Cálcio/química , Sobrevivência Celular , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/microbiologia , Dentina/química , Farmacorresistência Bacteriana , Fibroblastos/metabolismo , Humanos , Queratinócitos/citologia , Malondialdeído/química , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/química , Espécies Reativas de Oxigênio , Streptococcus mutans , Dente/efeitos dos fármacos , Dente/microbiologia , Cicatrização
17.
Redox Biol ; 16: 215-225, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524844

RESUMO

Insufficient hydrogen sulfide (H2S) has been implicated in Type 2 diabetic mellitus (T2DM) and hyperhomocysteinemia (HHcy)-related cardiovascular complications. We investigated the role of H2S in T2DM and HHcy-induced endothelial dysfunction in small mesenteric artery (SMA) of db/db mice fed a high methionine (HM) diet. HM diet (8 weeks) induced HHcy in both T2DM db/db mice and non-diabetic db/+ mice (total plasma Hcy: 48.4 and 31.3 µM, respectively), and aggravated the impaired endothelium-derived hyperpolarization factor (EDHF)-induced endothelium-dependent relaxation to acetylcholine (ACh), determined by the presence of eNOS inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME) and prostacyclin (PGI2) inhibitor indomethacin (INDO), in SMA from db/db mice but not that from db/+ mice. A non-selective Ca2+-active potassium channel (KCa) opener NS309 rescued T2DM/HHcy-impaired EDHF-mediated vascular relaxation to ACh. EDHF-induced relaxation to ACh was inhibited by a non-selective KCa blocker TEA and intermediate-conductance KCa blocker (IKCa) Tram-34, but not by small-conductance KCa (SKCa) blocker Apamin. HHcy potentiated the reduction of free sulfide, H2S and cystathionine γ-lyase protein, which converts L-cysteine to H2S, in SMA of db/db mice. Importantly, a stable H2S donor DATS diminished the enhanced O2- production in SMAs and lung endothelial cells of T2DM/HHcy mice. Antioxidant PEG-SOD and DATS improved T2DM/HHcy impaired relaxation to ACh. Moreover, HHcy increased hyperglycemia-induced IKCa tyrosine nitration in human micro-vascular endothelial cells. EDHF-induced vascular relaxation to L-cysteine was not altered, whereas such relaxation to NaHS was potentiated by HHcy in SMA of db/db mice which was abolished by ATP-sensitive potassium channel blocker Glycolamide but not by KCa blockers. CONCLUSIONS: Intermediate HHcy potentiated H2S reduction via CSE-downregulation in microvasculature of T2DM mice. H2S is justified as an EDHF. Insufficient H2S impaired EDHF-induced vascular relaxation via oxidative stress and IKCa inactivation in T2DM/HHcy mice. H2S therapy may be beneficial for prevention and treatment of micro-vascular complications in patients with T2DM and HHcy.


Assuntos
Fatores Biológicos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hiper-Homocisteinemia/metabolismo , Acetilcolina/metabolismo , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/patologia , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/patologia , Camundongos , Camundongos Endogâmicos NOD , Óxido Nítrico/metabolismo , Bloqueadores dos Canais de Potássio/metabolismo , Vasodilatação/genética
18.
J Vasc Res ; 55(2): 98-110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29455203

RESUMO

BACKGROUND: Mitochondrial reactive oxygen species (ROS) contribute to inflammation and vascular remodeling during atherosclerotic plaque formation. C57BL/6N (6N) and C57BL/6J (6J) mice display distinct mitochondrial redox balance due to the absence of nicotinamide nucleotide transhydrogenase (NNT) in 6J mice. We hypothesize that differential NNT expression between these animals alters plaque development. METHODS: 6N and 6J mice were treated with AAV8-PCSK9 (adeno-associated virus serotype 8/proprotein convertase subtilisin/kexin type 9) virus leading to hypercholesterolemia, increased low-density lipoprotein, and atherosclerosis in mice fed a high-fat diet (HFD). Mice were co-treated with the mitochondria-targeted superoxide dismutase mimetic MitoTEMPO to assess the contribution of mitochondrial ROS to atherosclerosis. RESULTS: Baseline and HFD-induced vascular superoxide is increased in 6J compared to 6N mice. MitoTEMPO diminished superoxide in both groups demonstrating differential production of mitochondrial ROS among these strains. PCSK9 treatment and HFD led to similar increases in plasma lipids in both 6N and 6J mice. However, 6J animals displayed significantly higher levels of plaque formation. MitoTEMPO reduced plasma lipids but did not affect plaque formation in 6N mice. In contrast, MitoTEMPO surprisingly increased plaque formation in 6J mice. CONCLUSION: These data indicate that loss of NNT increases vascular ROS production and exacerbates atherosclerotic plaque development.


Assuntos
Aorta/enzimologia , Doenças da Aorta/enzimologia , Aterosclerose/enzimologia , NADP Trans-Hidrogenase Específica para A ou B/deficiência , Animais , Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Colesterol/sangue , Modelos Animais de Doenças , Predisposição Genética para Doença , Hipercolesterolemia/enzimologia , Hipercolesterolemia/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , NADP Trans-Hidrogenase Específica para A ou B/genética , Compostos Organofosforados/farmacologia , Fenótipo , Piperidinas/farmacologia , Placa Aterosclerótica , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Superóxidos/metabolismo , Fatores de Tempo
19.
Redox Biol ; 15: 480-489, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29413960

RESUMO

Hydrogen sulfide (H2S) has emerged as an important physiological and pathophysiological signaling molecule in the cardiovascular system influencing vascular tone, cytoprotective responses, redox reactions, vascular adaptation, and mitochondrial respiration. However, bioavailable levels of H2S in its various biochemical metabolite forms during clinical cardiovascular disease remain poorly understood. We performed a case-controlled study to quantify and compare the bioavailability of various biochemical forms of H2S in patients with and without cardiovascular disease (CVD). In our study, we used the reverse-phase high performance liquid chromatography monobromobimane assay to analytically measure bioavailable pools of H2S. Single nucleotide polymorphisms (SNPs) were also identified using DNA Pyrosequencing. We found that plasma acid labile sulfide levels were significantly reduced in Caucasian females with CVD compared with those without the disease. Conversely, plasma bound sulfane sulfur levels were significantly reduced in Caucasian males with CVD compared with those without the disease. Surprisingly, gender differences of H2S bioavailability were not observed in African Americans, although H2S bioavailability was significantly lower overall in this ethnic group compared to Caucasians. We also performed SNP analysis of H2S synthesizing enzymes and found a significant increase in cystathionine gamma-lyase (CTH) 1364 G-T allele frequency in patients with CVD compared to controls. Lastly, plasma H2S bioavailability was found to be predictive for cardiovascular disease in Caucasian subjects as determined by receiver operator characteristic analysis. These findings reveal that plasma H2S bioavailability could be considered a biomarker for CVD in an ethnic and gender manner. Cystathionine gamma-lyase 1346 G-T SNP might also contribute to the risk of cardiovascular disease development.


Assuntos
Doenças Cardiovasculares/sangue , Cistationina gama-Liase/genética , Sulfeto de Hidrogênio/sangue , Sulfetos/sangue , Adulto , Negro ou Afro-Americano/genética , Idoso , Disponibilidade Biológica , Compostos Bicíclicos com Pontes/química , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Cromatografia Líquida , Feminino , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sulfeto de Hidrogênio/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca/genética
20.
Proteomics ; 18(7): e1700417, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29437267

RESUMO

Acamprosate is an FDA-approved medication for the treatment of alcoholism that is unfortunately only effective in certain patients. Although acamprosate is known to stabilize the hyper-glutamatergic state in alcoholism, pharmacological mechanisms of action in brain tissue remains unknown. To investigate the mechanism of acamprosate efficacy, the authors employ a pharmacoproteomics approach using an animal model of alcoholism, type 1 equilibrative nucleoside transporter (ENT1) null mice. The results demonstrate that acamprosate treatment significantly decreased both ethanol drinking and preference in ENT1 null mice compared to that of wild-type mice. Then, to elucidate acamprosate efficacy mechanism in ENT1 null mice, the authors utilize label-free quantification proteomics comparing both genotype and acamprosate treatment effects in the nucleus accumbens (NAc). A total of 1040 protein expression changes are identified in the NAc among 3634 total proteins detected. The proteomics and Western blot result demonstrate that acamprosate treatment decreased EAAT expression implicating stabilization of the hyper-glutamatergic condition in ENT1 null mice. Pathway analysis suggests that acamprosate treatment in ENT1 null mice seems to rescue glutamate toxicity through restoring of RTN4 and NF-κB medicated neuroimmune signaling compared to wild-type mice. Overall, pharmacoproteomics approaches suggest that neuroimmune restoration is a potential efficacy mechanism in the acamprosate treatment of certain sub-populations of alcohol dependent subjects.


Assuntos
Acamprosato/uso terapêutico , Dissuasores de Álcool/uso terapêutico , Alcoolismo/tratamento farmacológico , Modelos Animais de Doenças , Alcoolismo/genética , Alcoolismo/metabolismo , Animais , Transportador Equilibrativo 1 de Nucleosídeo/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Proteômica , Transdução de Sinais , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...